## **416.** Infrared Absorption of Substituents in Aromatic Systems. Part II.<sup>1</sup> Acylamino-compounds.

By A. R. KATRITZKY and R. A. JONES.

The absorption caused by the groups ·NH•COMe, •NH•CO•, •NMe•COMe, and ·NMe·CO· for a total of twenty-four acetamido-, N-methylacetamido-, benzamido-, and N-methylbenzamido-compounds is recorded. Tentative assignments are made for most of the characteristic bands, and the dependence of their positions and intensities on the structure of the compounds is discussed. More than 98% of the bands ( $\epsilon_A \ge 15$ ) for these compounds were correlated with the rings or substituent groups.

THE infrared spectra of monosubstituted amides have been extensively investigated because of the importance of the amide linkage in polypeptides and proteins, but the interest has been mainly in the NH and CO stretching bands ("amide I" and the " amide II " bands 2,3). Of the amido-benzenoid or -heteroaromatic compounds, acetanilide has been studied in detail,<sup>4</sup> and series of substituted  $^5$  and fatty acid  $^6$  anilides and some acetamidopyrimidines 7 have been investigated. The most comprehensive work on the assignment of skeletal frequencies is by Miyazawa et al.8

 $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 

While investigating the infrared absorption of heteroaromatic rings 9-15 and the tautomerism of acylaminopyridines and their oxides, <sup>16</sup> we studied a series of acetamidoand benzamido-compounds and their N-methyl derivatives. Almost all the bands were characteristic of either the rings or the substituents; those characteristic of the groups ·NH·CO·, ·NMe·CO·, ·NH·COMe, and ·NMe·COMe are recorded in Table 1 with crossreferences to the benzenoid and heteroaromatic bands (col. 19). When sufficiently soluble, the compounds were measured in 0.2M-chloroform solutions in a 0.117 mm. cell; <sup>17</sup> otherwise 0.02M-solutions (1 mm. cell) or, in one case, a Nujol mull were used.

The NH Stretching Band.—The non-bonded NH stretching frequency (possibly the trans-peak<sup>18</sup>) is shown by the compounds X·NH·COMe and X·NH·COPh in solution at 3440—3410  $[3420 \pm 10]$ \* cm.<sup>-1</sup> (except for the 2-substituted pyridine 1-oxides); the intensities are (30-45) \* in 0.2M- and (45-65) in 0.02M-solutions and are affected more by

\* Parentheses signify apparent molecular extinction coefficients, and square brackets indicate arithmetical means and standard deviations; see preceding paper.

<sup>1</sup> Part I, Katritzky and Coats, preceding paper.

<sup>2</sup> Bellamy, "The Infrared Spectra of Complex Molecules," 2nd edn., Methuen, London, 1958, pp. 203 - 223.

203-223.
<sup>3</sup> R. N. Jones and Sandorfy in Weissburger, "Technique of Organic Chemistry. Vol. IX. Chemical Applications of Spectroscopy," Interscience Publ. Inc., London, 1956, pp. 509-531.
<sup>4</sup> Abbott and Elliot, Proc. Roy. Soc., 1956, A, 234, 247.
<sup>5</sup> Richards and Thompson, J., 1947, 1248.
<sup>6</sup> Dijkstra and Jonge, Rec. Trav. chim., 1956, 75, 1173.
<sup>7</sup> Brownlie, J., 1950, 3062.
<sup>8</sup> Miyazawa, J. Chem. Soc., Japan, 1956, 77, 171; Miyazawa, Shimanouchi, and Mizushima, J. Chem. Phys., 1956, 24, 408; Spectrochim. Acta, 1957, 10, 217.
<sup>9</sup> Katritzky and Gardner, J., 1958, 2198.

<sup>6</sup> Katritzky and Gardner, J., 1958, 2198.
 <sup>10</sup> Katritzky, R. A. Jones, and Hands, *ibid.*, p. 3165.
 <sup>11</sup> Katritzky and Hands, J., 1958, 2202.

<sup>12</sup> Katritzky and Gardner, *ibid.*, p. 2192.
 <sup>13</sup> Katritzky, Beard, and Coats, unpublished work.

<sup>14</sup> Katritzky and Hands, *ibid.*, p. 2195.
 <sup>15</sup> Katritzky and Lagowski, *ibid.*, p. 4155.
 <sup>16</sup> R. A. Jones and Katritzky, (a) J., 1959, 1317; (b) unpublished work.
 <sup>17</sup> Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.

|         | -   | ţ                          | 2 20 2                                 | SD                                                                                             |                            |                          |                               |                            |                                         |                    |                                  |              |                |                                           |                                          | 9, 15                | 15                     | 15      | 15                                                  |             |                  |                          | 15        | 15                                                                                               | 15                  | 15             | ther                                                                                               |                                                                                                                                                |      |   |        |         |                  |      |        |
|---------|-----|----------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|--------------------------|-------------------------------|----------------------------|-----------------------------------------|--------------------|----------------------------------|--------------|----------------|-------------------------------------------|------------------------------------------|----------------------|------------------------|---------|-----------------------------------------------------|-------------|------------------|--------------------------|-----------|--------------------------------------------------------------------------------------------------|---------------------|----------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------|---|--------|---------|------------------|------|--------|
|         | 19  | Ref                        | 1 ring                                 |                                                                                                | 0 15                       | 6                        | 10                            | 5 11                       | w 165<br>13                             |                    | 15                               | 16a          | 9              | 12 12 19                                  | 0 15                                     |                      | Г                      |         | 14, 15                                              |             | 15               | 164                      | 10, 15    | 0 11,15                                                                                          | 5 12, 15            | 14, 15         | and nei                                                                                            |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 18  | 11n-                       | 8-                                     |                                                                                                | 1488 * 70                  | I                        | I                             | 1035 * 15                  | 918                                     | 843 * 20           | 1                                | I            | I              | 111                                       | 1035 30                                  |                      | 836 15                 |         | I                                                   |             | I                | I                        | I         |                                                                                                  | (1555 15<br>3335 20 |                | t. A, B;                                                                                           |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 17  | N-Me                       |                                        | cm. <sup>-1</sup> EA                                                                           | ¥                          | ¥                        | ¥                             | v                          | ×٩                                      | 44                 | I                                | 925 10       | I              | 921 20<br>925 20                          | ¥                                        | A                    | A                      | ¥       | ¥                                                   |             | 919 10           | 920 10                   | 918 10    | 920 10                                                                                           | 922 15              | 920 5          | by solven                                                                                          |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 16  | COMe                       | Me rock                                | cm. <sup>-1</sup> EA                                                                           | Ĵ                          | Ĵ                        | 998 20                        | 961 15                     |                                         | (997 35<br>(955 30 | ,<br>975 35                      |              |                | 975 45<br>972 35                          | ¥                                        | A                    | ¥                      | ¥       | ¥                                                   |             | ¥                | V                        | ¥         | ¥                                                                                                | ¥                   | ¥              | (CHCl <sub>a</sub> ) Band masked by solvent. A, Band neither                                       |                                                                                                                                                |      |   |        |         |                  |      |        |
|         |     |                            |                                        |                                                                                                |                            |                          |                               |                            |                                         | ~~                 | , 0,                             |              |                | 2 2 2 C                                   |                                          |                      |                        |         |                                                     |             | 60<br>15         | 35<br>120                | 200       | 2<br>2<br>2<br>2<br>2<br>3<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 70<br>155           | 2              | Band                                                                                               |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 15  |                            |                                        | cm1 EA                                                                                         | A                          | A                        | Y                             | A                          | 44                                      | A                  | 1                                | 1            |                | 1000<br>1000<br>997                       | A                                        | A                    | A                      | ¥       | A                                                   |             | $\sim$           | -                        | ירע       | 1020                                                                                             | (1021<br>1008       | 1009           | (CHCI <sub>1</sub> )                                                                               |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 14  | N-Me                       | Me rock                                | cm1 EA                                                                                         | ¥                          | ¥                        | ¥                             | ¥                          | 44                                      | ¥                  | 1035 * 15                        | 1030 15      | ()<br>()<br>() | $1025 \cdot 23$<br>(-)<br>$1025 \cdot 10$ | ¥                                        | ¥                    | ¥                      | V       | ¥                                                   |             | 1053 10          | 1043 20                  | 1050 * 15 | Ĵ                                                                                                | Ĵ                   | Ĵ              | orption.                                                                                           |                                                                                                                                                |      |   |        |         |                  |      |        |
|         |     |                            |                                        | ¥з                                                                                             |                            |                          |                               |                            | ×                                       |                    | 9                                | 15           | 30             | 220<br>220<br>120                         | 40                                       | •<br>64<br>67        | 2                      |         | 35                                                  |             | Ŷ                | Ŷ                        |           | $\hat{\mathbf{T}}$                                                                               | Ŷ                   | Ŷ              | r abs                                                                                              |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 13  | ~                          | •                                      | сњ.1                                                                                           | I                          | 1                        | 1                             | Ĵ                          | 1100 * w<br>                            | 1                  | 1086                             | 1086         | 1087           | 1092 20<br>1092 20<br>1080 55             | 1096                                     | 1100                 | ĮÎ                     | I       | 1085                                                |             | Ĵ                | Ĩ                        | 1         | Ĵ                                                                                                | Ĵ                   | Ĵ              | tronge                                                                                             |                                                                                                                                                |      |   |        |         |                  |      |        |
|         |     | Me                         |                                        | Y3                                                                                             |                            |                          |                               |                            |                                         |                    | 60                               | 50           | 83             | 3 <u>8</u> 1                              |                                          |                      | -                      |         |                                                     |             | 66               | 75                       | 85        | 100                                                                                              | <b>06</b>           | 95             | by s                                                                                               |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 12  | N-Me<br>Me rock            |                                        | A cm1 EA                                                                                       | 5<br>A                     | V                        | A .                           | A                          | × 4                                     | ¥                  | 5 1138                           |              | 1138           | 0 1140<br>1141<br>1143                    | ¥                                        | ¥                    | A                      | Y       | ¥                                                   |             | 70 1108          | 1106                     | 1111 (    | 40 1117                                                                                          | 1109                | 1098           | masked                                                                                             | ımeral.                                                                                                                                        |      |   |        |         |                  |      |        |
|         | 11  | Two CN stretching<br>modes |                                        | EA CM1 EA                                                                                      | 1297 * 60 1248 135         | 90) (CHCI <sub>1</sub> ) | 1282 120 (CHCl <sub>a</sub> ) | (CHCI)                     | 1245 •<br>(CHCl,)                       | Ĵ                  | 70 1246* 25                      | 100 (CHCIs)  | (CHCI,)        | []]                                       | (CHCI.)                                  | (CHCI <sub>s</sub> ) | (CHCI.)                | (CHCI,) | Ĵ                                                   |             | 115 1280 70 1108 | 200 (CHCl <sub>3</sub> ) | (CHCI,)   | 1288 140                                                                                         | Ĵ                   | Ĵ              | Absence of absorption. () Band masked by stronger absorption.                                      | l by a nu<br>m cell                                                                                                                            |      |   |        |         |                  |      |        |
|         | 10  | CNS                        | CNst                                   | 1 EA                                                                                           | •                          | 606                      | 120                           | (CHCIa)                    | 1263 W<br>(CHCla)                       | 1270 160           |                                  |              | 88             |                                           | <b>c</b> ,)                              | (CHCI,)              | 1280 135               | • 65    | *<br>280                                            |             |                  |                          | 140       | 80                                                                                               | 145                 | 1255 * 240     | <br>                                                                                               | licated                                                                                                                                        |      |   |        |         |                  |      |        |
| TABLE ] | Ä   | Two                        |                                        | сшт                                                                                            | 1297                       | (1277                    | 1282                          | (CH                        | 1263<br>(CHC                            | 1270               | 1297                             | 1295         | 1299           | 1288 •<br>()                              | (CHCI.)                                  | H)                   | 1280                   | 1253    | $\begin{cases} 1300 * 80 \\ 1274 & 280 \end{cases}$ |             | 1303             | 1304                     | 1304      | 1300                                                                                             | 1296                |                | orptio                                                                                             | is ind<br>24 / in                                                                                                                              |      |   |        |         |                  |      |        |
| TAB     | _0= | ې =                        | 5 6                                    | £,                                                                                             | 175                        | 150                      | 95                            | 350                        | s 8                                     | 110                | 20                               | 99           | 4              | 50<br>155                                 | 190                                      | 175                  | 125                    | 50      | 55                                                  |             | 30               | 115                      | 55        | 80                                                                                               | 96                  | 230            | of abs                                                                                             | / o.o                                                                                                                                          |      |   |        |         |                  |      |        |
| •       | 6 _ | <u>c-n-</u> c<br>= -       |                                        | CID1 EA                                                                                        | 1314                       | 1328                     | 1326                          | 1300                       | <b>132</b> 0<br>1296                    | 1313               | 1330                             | 1320         | 1325           | 1311                                      | 1313                                     | 1330                 | 1329                   | 1306    | (1322 •<br>(1310                                    |             | 1330             | 1326                     | 1326      | 1320                                                                                             | 1319                | 1330           | ence                                                                                               | substi<br>ition (                                                                                                                              |      |   |        |         |                  |      |        |
|         | 8   | 4e                         | Me sym<br>bend<br>cm. <sup>-1</sup> EA | Ϋ́ω                                                                                            | 35                         | 85                       | <b>06</b>                     | 80                         | s A                                     | 96                 | 75                               | 105          | 85             | 1889<br>1891                              |                                          |                      |                        |         | ~~                                                  |             |                  |                          |           |                                                                                                  |                     |                | - Abs                                                                                              | d the                                                                                                                                          |      |   |        |         |                  |      |        |
|         |     | COMe                       |                                        | 1373                                                                                           | 1368                       | 1369                     | 1367                          | 1363<br>1368               | 1368                                    | 1356               | 1352                             |              | 1343<br>1343   | A                                         | A                                        | Ą                    | ¥                      | A       |                                                     | A           | A                | Y                        | A         | A                                                                                                | A                   |                | tition o                                                                                           |                                                                                                                                                |      |   |        |         |                  |      |        |
|         | 7   | N-Me                       | Me sym<br>hend                         | cm. <sup>-1</sup> EA                                                                           | ¥                          | ¥                        | ¥                             | ¥                          | 44                                      | ¥                  | 1384 200                         | 1377 220     | 382 170        | 1374 170<br>1375 205                      | ×                                        | ¥                    | Ŷ                      | V       | ¥                                                   |             | 1372 280         | 1356 300                 | 1362 240  | 1359 315                                                                                         | 1353 260            | 1355 260       | two peal                                                                                           | pyridine 1-oxide; the position of the substituent is indicated by a numeral.<br>Broad absorption of Saturated solution (~0.03w) in 0.1 mm cell |      |   |        |         |                  |      |        |
|         |     |                            |                                        | 0                                                                                              |                            | 50                       | 155                           | 35                         | ₿                                       | 95                 |                                  |              |                |                                           | <b>[</b>                                 | 40                   | 120                    | 35      | _                                                   |             | A                | 1                        | F         | -                                                                                                | 1                   | 1              | on of                                                                                              | oxide;                                                                                                                                         |      |   |        |         |                  |      |        |
|         | 9   | ~                          |                                        | ст. <sup>-1</sup> ЕА                                                                           | 1                          | 1405                     | 1411                          | 1400 *                     | 1405                                    | 1400 *             | î                                | Ĵ            | 1              | 11                                        | (CHCI,)                                  | 1409 40              | 1413 * 120             | 1402 •  | Ĵ                                                   |             | 1                | I                        | I         | I                                                                                                | I                   | I              | positic                                                                                            | line 1-                                                                                                                                        |      |   |        |         |                  |      |        |
|         | ŝ   | Me                         | E S                                    | Ψu                                                                                             |                            |                          |                               |                            | <b>4</b> 4                              |                    | 80                               | -            | + 140          | * 180<br>* 180                            | ¥                                        | ¥                    | ¥                      |         |                                                     |             | 100              | ጉ                        | 120       | C21                                                                                              | *<br>89             | 130            | iperin                                                                                             | <b>-</b> .                                                                                                                                     |      |   |        |         |                  |      |        |
|         |     | N-N                        | Mea                                    | Me a                                                                                           | Mea                        | Mea                      | Mea                           | Mea                        | Me asym<br>bend<br>cm. <sup>-1</sup> EA | E.                 | CH.                              | A            | Ā              | 4                                         | A                                        | A                    | 44                     | A       | 1426                                                | 1436<br>[]  | 1420             | 1424 -<br>1423 *         |           | 7                                                                                                |                     |                | ¥                                                                                                  |                                                                                                                                                | 1423 | T | 1423 1 | 1416    | (1436 *<br>11423 | 1417 | the su |
|         | 4   | Amide                      | п                                      | ст1 Ел                                                                                         | * 95                       | ີ ເບົ                    | 1538 170<br>1513 200          | 1527 * 120<br>1508 290     | 500 • s<br>(CHCl,)                      | 1505 400           | ۲                                | Ā            | ۲              | <b>.</b>                                  | (CHCI,)                                  | (CHCI <sub>s</sub> ) |                        | 310     | 460                                                 |             | ۲                | ¥                        | 4.        |                                                                                                  | <br>ح               | •              | å<br>S                                                                                             | substi<br>niol m                                                                                                                               |      |   |        |         |                  |      |        |
|         |     | ΨD                         | -                                      | E E                                                                                            | (1548<br>1594              |                          | (1548<br>11524                | 1548<br>1524               | 1594                                    | 0                  |                                  |              | 1500 CHCL      |                                           |                                          |                      |                        |         | (CE                                                 | Ü           | 1518             | 1515<br>1493             | 1505      |                                                                                                  |                     |                |                                                                                                    | `                                                                                                                                              | •    |   | ered   | οŗ<br>Z |                  |      |        |
|         | e3  | Š                          |                                        | 1 EA                                                                                           | 330                        | 1711 280                 | 250                           | 255                        | ა.<br>ი.                                | 330                | 340                              | 310          |                | 880<br>880<br>880                         | 1679 310                                 | 1696 170             | 210                    | 290     | 290                                                 |             | 360              | 280                      | 350       |                                                                                                  | 350                 | 1665 370       | consid                                                                                             | ridin<br>felin                                                                                                                                 |      |   |        |         |                  |      |        |
|         |     | -                          | ą                                      | EB.                                                                                            | 1688                       | 171                      | 5 1690                        | 1694                       | 1700<br>1707                            | 1710               | 1653                             | 1665         | 1655           | 1668<br>1682                              | 1679                                     | 1696                 | 31679                  | 1682    | 45 1693                                             |             | 1641             | 1652                     | 1648      | 1691                                                                                             | 1660                | 1665           | otion                                                                                              | ted py                                                                                                                                         |      |   |        |         |                  |      |        |
|         | 8   | ΗN                         | H-bonded                               | :m. <sup>-1</sup> ε <sub>1</sub><br>ΌΜε                                                        | 310 3(                     | I                        | 260 * 31                      | 180 * 2                    | • ]                                     | 3280 75 1710 330   | COMe<br>A                        | ¥            | 4              | <b>4</b> 44                               | - Ph                                     | I                    | 300 * 31               | I       | 3280 41                                             | <b>COPh</b> | ¥                | A                        | 4         | ¥                                                                                                | V                   | ¥              | Absor                                                                                              | substitu<br>m in 0-                                                                                                                            |      |   |        |         |                  |      |        |
|         | 1   | ΗN                         | щ                                      | m. <sup>-1</sup> EAc<br>X-NH-C                                                                 | 3420 45 3310 30 1688 330 { | 3440 65                  | 3425 30 3260 * 35 1690 250    | 3410 40 3180 * 25 1694 255 | 3410 w                                  | 8<br>              | X-NMe <sup>-</sup>               | ¥            | ×۰             | <b>.</b>                                  | s X-NH-CC<br>3420 60                     | 3430 45              | 3420 45 3300 * 30 1679 | 3430 35 |                                                     | X ·NMe-COPh | ¥                | A                        | •         | V                                                                                                | ¥                   | ¥              | oulder. †<br>or found.                                                                             | Ph phenyl, P substituted pyridine, PO substituted                                                                                              |      |   |        |         |                  |      |        |
|         |     |                            |                                        | No. Ring cm. <sup>-1</sup> EA cm. <sup>-1</sup> EA cm. <sup>-1</sup> EA<br>Combounds X:NH:COMe | 1 Ph 3                     | 24Pa 3                   | 3 3P 3                        | 42P 3                      | 5 4POb<br>6 3POd 3                      | 7 2PO              | Compounds X-NMe-COMe<br>8 Ph A A | 9 <b>4</b> P | 10 3P          | 12 4PO<br>13 2PO                          | Compounds X-NH-COPh<br>14 Ph a 3420 60 - | 154Pa 3              | 16 3P 3                | 17 2P 3 | 18 2PO                                              | Compounds   | 19 Ph            | 20 4P                    | 21 3P     | 72 27                                                                                            | 28 4PO              | 24 <b>2</b> PO | * Shoulder. † Absorption considered to be the superimposition of two peaks.<br>erpected nor found. | Ph pt                                                                                                                                          |      |   |        |         |                  |      |        |
|         |     |                            |                                        |                                                                                                |                            |                          |                               |                            |                                         |                    |                                  |              |                |                                           |                                          |                      |                        |         |                                                     |             |                  |                          |           |                                                                                                  |                     |                |                                                                                                    |                                                                                                                                                |      |   |        |         |                  |      |        |

rn puezy, r substituten pyrame, ro substituted pyrame t-ozice; the position of the substituent is indicated by a nur a, 0-02h solution in 0-1 mm. cell. b, Nujol mull. c, Broad absorption. d, Saturated solution ( $<0^{-02h}$ ) in 0-1 mm. cell.

 $\lceil 1959 \rceil$ 

the concentration than by the nature of the ring. Thompson and his co-workers 18 found that meta- and para-substituents have little effect on the position, half band-width, and integrated intensity (and therefore also  $\epsilon_A$ ) of this band for acetanilide; concentration does affect the intensity, and at infinite dilution acetanilide absorbs at 3436 cm.<sup>-1</sup> (125) (lithium fluoride prism).

The compounds measured at 0.2M-concentration usually show absorption at ca. 3300 cm.<sup>-1</sup> due to the hydrogen-bonded NH groups.<sup>2</sup> In the 2-substituted pyridine 1-oxides intramolecular bonding (cf. I) lowers the frequency to 3280 cm.<sup>-1</sup>.

The CO Stretching Band (Table 1, col. 3).—This, the amide I band, occurs at 1711— 1641 cm.<sup>-1</sup>; the influence of R, R', and the ring (cf. II) can be distinguished.

(i) Changing R' from methyl to phenyl (cf. II) increases the conjugation of the carbonyl group (III) and lowers the frequency by 8–17  $[12 \pm 3]$  cm.<sup>-1</sup>.

(ii) Changing R from hydrogen to methyl also increases considerably the conjugation of the carbonyl group, both because of the favourable inductive effect of the methyl group and, probably more importantly, by causing partial steric inhibition of mesomerism between the nitrogen atom and the ring for which there is independent evidence from basicities and ultraviolet spectra.<sup>16</sup> The frequency is lowered by 25-46 [ $35 \pm 6$ ] cm.<sup>-1</sup>.



(iii) Changing the ring from phenyl to pyridine or pyridine 1-oxide always raises the frequency (Table 2), indicating that the heterocyclic rings are all more strongly electronaccepting than phenyl and conjugate more tightly with the amide-nitrogen atom, thus causing this atom to conjugate less with the carbonyl group (cf. IV). The increment is larger for the 4- than for the 3-substituted pyridines, as expected from the relative electronwithdrawing abilities of these rings.<sup>1,19</sup> The large increments found for all the pyridine 1-oxides agree with the known ability of this ring to withdraw electrons strongly at each nuclear position.<sup>1,19,20</sup> The increments are smaller than expected in the 2-pyridyl series, possibly owing to steric inhibition of hydrogen bonding of the pyridine nitrogen atom to the solvent <sup>11</sup> (cf. V).

TABLE 2. Carbonyl stretching bands. Increments in wavenumbers over that for the corresponding benzenoid compound.

|          | <b>4</b> P | 3P | $2\mathrm{P}$ | 4PO    | <b>3</b> PO | 2PO |
|----------|------------|----|---------------|--------|-------------|-----|
| NH·COMe  | 23         | 2  | 6             | (12) * | 19          | 22  |
| NH•COPh  | 17         | 0  | 3             | ·      |             | 14  |
| NMe•COMe | 12         | 5  | 7             | 15     |             | 29  |
| NMe COPh | 11         | 7  | 9             | 19     |             | 24  |

<sup>a</sup> Difference obtained by using paraffin-paste spectrum. See also footnotes to Table 1.

The intensities are (170-330) [(270  $\pm$  55)] for ·NH·COPh and ·NH·COMe compounds and (280-420) [ $(345 \pm 40)$ ] for ·NMe·COPh and ·NMe·COMe compounds.

The frequency range of this band agrees with previous work.<sup>2</sup> Similar raising of the frequency as the ring becomes increasingly electron-accepting has been noted for meta- and para-substituted acetanilides <sup>5</sup> and acetyl-azoles.<sup>21</sup>

<sup>18</sup> Russell and Thompson, J., 1955, 483; Spectrochim. Acta, 1956, 8, 138; Moccia and Thompson, *ibid.*, 1957, **10**, 240. <sup>19</sup> Katritzky, *J.*, 1958, 4162. <sup>20</sup> Katritzky, *Quart. Rev.*, 1956, **10**, 395.

<sup>21</sup> Otting, Chem. Ber., 1956, 89, 1940.

## 2070 Infrared Absorption of Substituents in Aromatic Systems. Part II.

The Amide II Band (Table 1, col. 4).—For the X·NH·COMe and X·NH·COPh compounds the band is found at 1524-1505 cm<sup>-1</sup> (200-460) [1513  $\pm$  7 cm<sup>-1</sup> (310 + 100)]. often with a shoulder or subsidiary band. The region is obscured by chloroform when measured in a 0.1 mm. cell. This band usually occurs at 1580—1475 cm.<sup>-1</sup> and is due to the NH in-plane deformation frequency coupled with the N-C stretching frequency of the •NH•CO• group.<sup>2,3,8,22</sup>

The 1450—1400 cm.<sup>-1</sup> Region.—The X·NMe·COMe and X·NMe·COPh compounds show a band at 1426—1416 cm.<sup>-1</sup> (60—130)  $[1422 \pm 4 \text{ cm.}^{-1} (90 \pm 25)]$  (Table 1, col. 5). This is probably the asymmetric  $N-CH_3$  CH-bending frequency which occurs at 1465— 1442 cm.<sup>-1</sup> for compounds of type R·CO·NHMe.<sup>8</sup>

Some of the X·NH·COMe and X·NH·COPh compounds show a shoulder or band of unknown origin at  $1413 - 1400 \text{ cm}^{-1}$  (40-155) (col. 6).

The 1400-1340 cm.<sup>-1</sup> Region. Absorption (col. 7) by the X·NMe·COMe compounds at 1384—1374 cm.<sup>-1</sup> (170—220)  $[1378 \pm 4 \text{ cm.}^{-1} (195 \pm 20)]$  and by the X·NMe·COPh compounds at 1372–1353 cm.<sup>-1</sup> (240–310) [1360  $\pm$  7 cm.<sup>-1</sup> (275  $\pm$  30)] is probably the CH symmetrical bending frequency previously found 8 at 1414–1401 cm.<sup>-1</sup> for R•CO•NHMe compounds.

The symmetrical CH bending of the acetyl-methyl group causes absorption (col. 8) at 1373 - 1363 cm<sup>-1</sup> (80-95) [1368 + 3 cm<sup>-1</sup> (85 + 5)] for the X·NH·COMe compounds and at 1356-1343 cm<sup>-1</sup> (75-160) [1351 + 4 cm<sup>-1</sup> (105 + 30)] for the X·NMe<sup>•</sup>COMe compounds. The ring appears to play a constant rôle in determining the position of the band, for the band is 15-20 [17 + 2] cm.<sup>-1</sup> lower for the •NMe•COMe than for the corresponding •NH•COMe compound. For comparison, compounds X•COMe <sup>17</sup> absorb at  $[1359 \pm 1.5]$ cm.<sup>-1</sup> (135 + 20)], compounds R·O·COMe  $^{23,24}$  at ca. 1375–1365 cm.<sup>-1</sup>, and compounds R•NH•COMe <sup>8</sup> at 1375-1366 cm.<sup>-1</sup>.

The 1340—1240 cm.<sup>-1</sup> Region.—Stretching frequencies of the two C-N partial double bonds (cf. IV) are expected in this region. Belonging to the same symmetry class, they will combine to give symmetric and asymmetric modes. With the NH-compounds, the NH in-plane deformation should also intereact with these modes.

Two or three bands are shown (Table 1, cols. 9-11). As expected from the above discussion, the absorption depends little on whether R' is Me or Ph (II), more on the nature of the ring, and most on whether R is Me or H.

(i) The first band (col. 9) is at 1330-1300 [1319 + 10] cm.<sup>-1</sup>; there is no simple relation between the precise position and the structure. The intensities vary for the X·NMe·COMe and X·NMe·COPh compounds (20–230), but the band for X·NMe·COPh is always 1·4–1·9  $[1.60 \pm 0.2]$  times as intense as that for the corresponding X·NMe·COMe compounds; for these compounds the intensities increase as the rings become more electron-accepting:

$$Ph < 3P < 2P \sim 4P \sim 4PO < 2PO$$

For the compounds X·NH·COMe and X·NH·COPh the intensities vary (95-450); for corresponding compounds, replacing NH by NMe increases the intensity 0.9-1.3 $[1.15 \pm 0.2]$  times; there is no simple relation between intensity and the ring type.

(ii) For the X·NMe·COMe and X·NMe·COPh compounds the second band (col. 10) is at 1304—1295 cm.<sup>-1</sup> (70—200) [1299  $\pm$  3 cm.<sup>-1</sup> (110  $\pm$  45)] except for No. 24. This band appears to occur at ca. 1280-1260 cm.<sup>-1</sup> for the X·NH·COMe and X·NH·COPh compounds, but this region is often obscured by solvent (1 mm. cell).

(iii) A third band sometimes appears (col. 11) on the edge of the region obscured by solvent absorption, *i.e.*, below 1240 cm.<sup>-1</sup> (0.1 mm. cell).

The 1200-1100 cm.<sup>-1</sup> Region (Table 1, col. 12).—The X·NMe•COMe compounds show a band at 1143–1138 cm.<sup>-1</sup> (50–110) [1140  $\pm$  2 cm.<sup>-1</sup> (75  $\pm$  20)], and the X·NMe·COPh

<sup>&</sup>lt;sup>22</sup> Frazer and Rice, Nature, 1952, 170, 490.

 <sup>&</sup>lt;sup>23</sup> Francis, J. Chem. Phys., 1951, 19, 942.
 <sup>24</sup> R. N. Jones and Cole, J. Amer. Chem. Soc., 1952, 74, 5648.

compounds one at 1117—1098 cm.<sup>-1</sup> (75—100) [1108  $\pm$  6 cm.<sup>-1</sup> (90  $\pm$  8)]; these are probably *N*-methyl rocking frequencies, occurring <sup>8</sup> at 1179—1149 cm.<sup>-1</sup> for R·CO·NHMe compounds.

*The* 1100—800 cm.<sup>-1</sup> Region.—A band of unknown origin is found for the compounds X·NMe·COMe and X·NH·COPh at 1096—1080 cm.<sup>-1</sup> (15—55) [1088  $\pm$  5 cm.<sup>-1</sup> (35  $\pm$  10)] (col. 13).

The X·NMe·COPh compounds show a band at 1053—1030 cm.<sup>-1</sup> (10—20) (col. 14) and a doublet at 1025—1021 and 1012—1005 cm.<sup>-1</sup> (30—155) (col. 15); the analogous absorption for the X·NMe·COMe compounds, which is weaker or absent, occurs at *ca*. 1030 and 1000 cm.<sup>-1</sup>. The compounds X·NMe·COMe and X·NMe·COPh show a band at 925—918 cm.<sup>-1</sup> (5—20) [921  $\pm$  2 cm.<sup>-1</sup> (10  $\pm$  5)] (col. 17). Two of these bands are probably due to C–N stretching and Me rocking modes of the N–CH<sub>3</sub> group; a possible assignment is indicated in Table 1.

A band, probably an acetyl-methyl rocking mode (col. 16), occurs at 978—972 cm.<sup>-1</sup> (30—50) [975  $\pm$  2 cm.<sup>-1</sup> (40  $\pm$  8)] for the X·NMe·COMe compounds and at 998—958 cm.<sup>-</sup> (15—35) [978  $\pm$  19 cm.<sup>-1</sup> (25  $\pm$  10)] for the X·NH·COMe series. A band or oublet at 1041—987 cm.<sup>-1</sup> for CH<sub>3</sub>CO·NHR compounds has been assigned <sup>8</sup> to a Me rocking mode, and methyl ketones show a band at [959  $\pm$  5 cm.<sup>-1</sup> (35  $\pm$  15)].<sup>17</sup>

Other Bands.—Nearly all the remaining bands ( $\epsilon_{A} \ge 15$ ) for these compounds could be assigned to the heterocyclic and/or benzenoid rings; most have been published (see refs. in col. 19). Bands which could not be correlated in this way are given in col. 18; they form 2% of the total.

Experimental.—See Part I<sup>1</sup> for details.

DYSON PERRINS LABORATORY, OXFORD. UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE.

[Received, December 11th, 1958.]