416. Infrared Absorption of Substituents in Aromatic Systems. Part II. ${ }^{1}$ Acylamino-compounds.

By A. R. Katritzky and R. A. Jones.

The absorption caused by the groups $\cdot \mathrm{NH} \cdot \mathrm{COMe} \cdot \cdot \mathrm{NH} \cdot \mathrm{CO} \cdot, \cdot \mathrm{NMe} \cdot \mathrm{COMe}$, and $\cdot \mathrm{NMe} \cdot \mathrm{CO} \cdot$ for a total of twenty-four acetamido-, N-methylacetamido-, benzamido-, and N-methylbenzamido-compounds is recorded. Tentative assignments are made for most of the characteristic bands, and the dependence of their positions and intensities on the structure of the compounds is discussed. More than 98% of the bands ($\varepsilon_{\mathrm{A}} \geqslant 15$) for these compounds were correlated with the rings or substituent groups.
The infrared spectra of monosubstituted amides have been extensively investigated because of the importance of the amide linkage in polypeptides and proteins, but the interest has been mainly in the NH and C:O stretching bands (" amide I" and the " amide II " bands ${ }^{2,3}$). Of the amido-benzenoid or -heteroaromatic compounds, acetanilide has been studied in detail, ${ }^{4}$ and series of substituted ${ }^{5}$ and fatty acid ${ }^{6}$ anilides and some acetamidopyrimidines ${ }^{7}$ have been investigated. The most comprehensive work on the assignment of skeletal frequencies is by Miyazawa et al. ${ }^{8}$

(I)

While investigating the infrared absorption of heteroaromatic rings ${ }^{9-15}$ and the tautomerism of acylaminopyridines and their oxides, ${ }^{16}$ we studied a series of acetamidoand benzamido-compounds and their N-methyl derivatives. Almost all the bands were characteristic of either the rings or the substituents; those characteristic of the groups $\cdot \mathrm{NH} \cdot \mathrm{CO} \cdot$, $\cdot \mathrm{NMe} \cdot \mathrm{CO} \cdot$, $\cdot \mathrm{NH} \cdot \mathrm{COMe}$, and $\cdot \mathrm{NMe} \cdot \mathrm{COMe}$ are recorded in Table 1 with crossreferences to the benzenoid and heteroaromatic bands (col. 19). When sufficiently soluble, the compounds were measured in 0.2 m -chloroform solutions in a 0.117 mm . cell; ${ }^{17}$ otherwise 0.02 m -solutions (1 mm . cell) or, in one case, a Nujol mull were used.

The NH Stretching Band.-The non-bonded NH stretching frequency (possibly the trans-peak ${ }^{18}$) is shown by the compounds $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COPh}$ in solution at $3440-3410[3420 \pm 10]^{*} \mathrm{~cm} .^{-1}$ (except for the 2 -substituted pyridine 1 -oxides); the intensities are $(30-45)$ * in 0.2 m - and $(45-65)$ in 0.02 m -solutions and are affected more by

[^0]Katritzky and Jones: Infrared Absorption of

the concentration than by the nature of the ring. Thompson and his co-workers ${ }^{18}$ found that meta- and para-substituents have little effect on the position, half band-width, and integrated intensity (and therefore also ε_{A}) of this band for acetanilide; concentration does affect the intensity, and at infinite dilution acetanilide absorbs at $3436 \mathrm{~cm} .^{-1}$ (125) (lithium fluoride prism).

The compounds measured at $0 \cdot 2 \mathrm{M}$-concentration usually show absorption at $c a .3300$ $\mathrm{cm} .{ }^{-1}$ due to the hydrogen-bonded NH groups. ${ }^{2}$ In the 2 -substituted pyridine 1 -oxides intramolecular bonding (cf. I) lowers the frequency to $3280 \mathrm{~cm} .^{-1}$.

The C:O Stretching Band (Table 1, col. 3).-This, the amide I band, occurs at 1711$1641 \mathrm{~cm} .^{-1}$; the influence of $\mathrm{R}, \mathrm{R}^{\prime}$, and the ring (cf. II) can be distinguished.
(i) Changing R' from methyl to phenyl (cf. II) increases the conjugation of the carbonyl group (III) and lowers the frequency by $8-17[12 \pm 3] \mathrm{cm}^{-1}$.
(ii) Changing R from hydrogen to methyl also increases considerably the conjugation of the carbonyl group, both because of the favourable inductive effect of the methyl group and, probably more importantly, by causing partial steric inhibition of mesomerism between the nitrogen atom and the ring for which there is independent evidence from basicities and ultraviolet spectra. ${ }^{16}$ The frequency is lowered by $25-46[35 \pm 6] \mathrm{cm} . .^{-1}$.

(III)

(IV)

(V)
(iii) Changing the ring from phenyl to pyridine or pyridine l-oxide always raises the frequency (Table 2), indicating that the heterocyclic rings are all more strongly electronaccepting than phenyl and conjugate more tightly with the amide-nitrogen atom, thus causing this atom to conjugate less with the carbonyl group (cf. IV). The increment is larger for the 4 - than for the 3 -substituted pyridines, as expected from the relative electronwithdrawing abilities of these rings. ${ }^{1,19}$ The large increments found for all the pyridine l-oxides agree with the known ability of this ring to withdraw electrons strongly at each nuclear position. $1,18,20$ The increments are smaller than expected in the 2 -pyridyl series, possibly owing to steric inhibition of hydrogen bonding of the pyridine nitrogen atom to the solvent ${ }^{11}$ (cf. V).

Table 2. Carbonyl stretching bands. Increments in wavenumbers over that for the corresponding benzenoid compound.

		4 P	3 P	2 P	4 PO	3 PO
$\mathrm{NH} \cdot \mathrm{COMe} \ldots \ldots \ldots \ldots \ldots \ldots$	23	2	6	$(12)^{a}$	19	22
$\mathrm{NH} \cdot \mathrm{COPh} \ldots \ldots \ldots \ldots \ldots \ldots$.	17	0	3	-	-	14
NMe $\cdot \mathrm{COMe} \ldots \ldots \ldots \ldots \ldots \ldots$.	12	5	7	15	-	29
NMe COPh $\ldots \ldots \ldots \ldots \ldots .$.	11	7	9	19	-	24

a Difference obtained by using paraffin-paste spectrum. See also footnotes to Table 1.
The intensities are (170-330) [(270 $\pm 55)]$ for $\cdot \mathrm{NH} \cdot \mathrm{COPh}$ and $\cdot \mathrm{NH} \cdot \mathrm{COMe}$ compounds and (280-420) [(345士40)] for $\cdot \mathrm{NMe} \cdot \mathrm{COPh}$ and $\cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds.

The frequency range of this band agrees with previous work. ${ }^{2}$ Similar raising of the frequency as the ring becomes increasingly electron-accepting has been noted for meta- and para-substituted acetanilides ${ }^{5}$ and acetyl-azoles. ${ }^{21}$

[^1]The Amide II Band (Table 1, col. 4).-For the $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COPh}$ compounds the band is found at $1524-1505 \mathrm{~cm} .^{-1}(200-460)\left[1513 \pm 7 \mathrm{~cm} .^{-1}(310 \pm 100)\right]$, often with a shoulder or subsidiary band. The region is obscured by chloroform when measured in a 0.1 mm . cell. This band usually occurs at $1580-1475 \mathrm{~cm} .^{-1}$ and is due to the NH in-plane deformation frequency coupled with the $\mathrm{N}^{-} \mathrm{C}$ stretching frequency of the $\cdot \mathrm{NH} \cdot \mathrm{CO} \cdot$ group. ${ }^{2,3,8,22}$

The $1450-1400 \mathrm{~cm} .^{-1}$ Region.-The $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ compounds show a band at $1426-1416 \mathrm{~cm} .^{-1}(60-130)\left[1422 \pm 4 \mathrm{~cm}^{-1}(90 \pm 25)\right]$ (Table 1, col. 5). This is probably the asymmetric $\mathrm{N}-\mathrm{CH}_{3} \mathrm{CH}$-bending frequency which occurs at $1465-$ $1442 \mathrm{~cm} .^{-1}$ for compounds of type R•CO•NHMe. ${ }^{8}$

Some of the $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COPh}$ compounds show a shoulder or band of unknown origin at $1413-1400 \mathrm{~cm} .^{-1}(40-\mathrm{l} 55)$ (col. 6).

The $1400-1340 \mathrm{~cm} .^{-1}$ Region.-Absorption (col. 7) by the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds at $1384-1374 \mathrm{~cm} .^{-1}(170-220)\left[1378 \pm 4 \mathrm{~cm} .^{-1}(195 \pm 20)\right]$ and by the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ compounds at $1372-1353 \mathrm{~cm} .^{-1}(240-310)\left[1360 \pm 7 \mathrm{~cm} .^{-1}(275 \pm 30)\right]$ is probably the CH symmetrical bending frequency previously found ${ }^{8}$ at $1414-1401 \mathrm{~cm} .^{-1}$ for $\mathrm{R} \cdot \mathrm{CO} \cdot \mathrm{NHMe}$ compounds.

The symmetrical CH bending of the acetyl-methyl group causes absorption (col. 8) at $1373-1363 \mathrm{~cm} .^{-1}(80-95)\left[1368 \pm 3 \mathrm{~cm} .^{-1}(85 \pm 5)\right]$ for the $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ compounds and at $1356-1343 \mathrm{~cm} .^{-1}(75-160)\left[1351 \pm 4 \mathrm{~cm} .^{-1}(105 \pm 30)\right]$ for the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds. The ring appears to play a constant rôle in determining the position of the band, for the band is $15-20[17 \pm 2] \mathrm{cm} .^{-1}$ lower for the $\cdot \mathrm{NMe} \cdot \mathrm{COMe}$ than for the corresponding $\cdot \mathrm{NH} \cdot \mathrm{COMe}$ compound. For comparison, compounds X•COMe ${ }^{17}$ absorb at [1359 $\pm \mathbf{1} \cdot \mathbf{5}$ $\mathrm{cm} .^{-1}$ (135 ± 20)], compounds $\mathrm{R} \cdot \mathrm{O} \cdot \mathrm{COMe}{ }^{23,24}$ at $c a .1375-1365 \mathrm{~cm} . .^{-1}$, and compounds $\mathrm{R} \cdot \mathrm{NH} \cdot \mathrm{COMe}^{8}$ at $1375-1366 \mathrm{~cm} .^{-1}$.

The $1340-1240 \mathrm{~cm} .^{-1}$ Region.-Stretching frequencies of the two $\mathrm{C}-\mathrm{N}$ partial double bonds (cf. IV) are expected in this region. Belonging to the same symmetry class, they will combine to give symmetric and asymmetric modes. With the NH-compounds, the NH in-plane deformation should also intereact with these modes.

Two or three bands are shown (Table 1, cols. 9-11). As expected from the above discussion, the absorption depends little on whether R^{\prime} is Me or Ph (II), more on the nature of the ring, and most on whether R is Me or H .
(i) The first band (col. 9) is at $1330-1300[1319 \pm 10] \mathrm{cm}^{-1}$; there is no simple relation between the precise position and the structure. The intensities vary for the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ compounds (20-230), but the band for $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ is always $1 \cdot 4-1 \cdot 9$ $[\mathbf{l} \cdot 60 \pm 0 \cdot 2]$ times as intense as that for the corresponding $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds; for these compounds the intensities increase as the rings become more electron-accepting:

$$
\mathrm{Ph}<3 \mathrm{P}<2 \mathrm{P} \sim 4 \mathrm{P} \sim 4 \mathrm{PO}<2 \mathrm{PO}
$$

For the compounds $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COPh}$ the intensities vary ($95-450$); for corresponding compounds, replacing NH by NMe increases the intensity $0.9-1.3$ $[1 \cdot 15 \pm 0.2]$ times; there is no simple relation between intensity and the ring type.
(ii) For the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ compounds the second band (col. 10) is at $1304-1295 \mathrm{~cm} .^{-1}(70-200)\left[1299 \pm 3 \mathrm{~cm} .^{-1}(110 \pm 45)\right]$ except for No. 24. This band appears to occur at $c a .1280-1260 \mathrm{~cm} .^{-1}$ for the $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COPh}$ compounds, but this region is often obscured by solvent (1 mm . cell).
(iii) A third band sometimes appears (col. 11) on the edge of the region obscured by solvent absorption, i.e., below $1240 \mathrm{~cm} .^{-1}(0 \cdot 1 \mathrm{~mm}$. cell).

The $1200-1100 \mathrm{~cm} .^{-1}$ Region (Table 1, col. 12). -The $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds show a band at $1143-1138 \mathrm{~cm} .^{-1}(50-110)\left[1140 \pm 2 \mathrm{~cm} .^{-1}(75 \pm 20)\right]$, and the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$

[^2]compounds one at $1117-1098 \mathrm{~cm}^{-1}(75-100)\left[1108 \pm 6 \mathrm{~cm} .^{-1}(90 \pm 8)\right]$; these are probably N-methyl rocking frequencies, occurring ${ }^{8}$ at $1179-1149 \mathrm{~cm} .^{-1}$ for $\mathrm{R} \cdot \mathrm{CO} \cdot \mathrm{NHMe}$ compounds.

The $1100-800 \mathrm{~cm} .^{-1}$ Region.-A band of unknown origin is found for the compounds $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COPh}$ at $1096-1080 \mathrm{~cm} .^{-1}(15-55)\left[1088 \pm 5 \mathrm{~cm} .^{-1}(35 \pm 10)\right]$ (col. 13).

The $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ compounds show a band at $1053-1030 \mathrm{~cm} .^{-1}(10-20)(\mathrm{col} .14)$ and a doublet at $1025-1021$ and $1012-1005 \mathrm{~cm} .^{-1}$ (30-155) (col. 15); the analogous absorption for the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds, which is weaker or absent, occurs at ca. 1030 and $1000 \mathrm{~cm} .{ }^{-1}$. The compounds $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ and $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COPh}$ show a band at $925-918 \mathrm{~cm} .^{-1}(5-20)\left[921 \pm 2 \mathrm{~cm} .^{-1}(10 \pm 5)\right]$ (col. 17). Two of these bands are probably due to $\mathrm{C}-\mathrm{N}$ stretching and Me rocking modes of the $\mathrm{N}^{-} \mathrm{CH}_{3}$ group; a possible assignment is indicated in Table 1.

A band, probably an acetyl-methyl rocking mode (col. 16), occurs at $978-972 \mathrm{~cm} .^{-1}$ (30-50) [$\left.975 \pm 2 \mathrm{~cm}^{-1}(40 \pm 8)\right]$ for the $\mathrm{X} \cdot \mathrm{NMe} \cdot \mathrm{COMe}$ compounds and at $998-958 \mathrm{~cm} .^{-}$ ($15-35$) $\left[978 \pm 19 \mathrm{~cm}^{-1}(25 \pm 10)\right]$ for the $\mathrm{X} \cdot \mathrm{NH} \cdot \mathrm{COMe}$ series. A band or oublet at $1041-987 \mathrm{~cm} .^{-1}$ for $\mathrm{CH}_{3} \mathrm{CO} \cdot \mathrm{NHR}$ compounds has been assigned ${ }^{8}$ to a Me rocking mode, and methyl ketones show a band at $\left[959 \pm 5 \mathrm{~cm} .^{-1}(35 \pm 15)\right]{ }^{17}$

Other Bands.-Nearly all the remaining bands ($\varepsilon_{\mathrm{A}} \geqslant 15$) for these compounds could be assigned to the heterocyclic and/or benzenoid rings; most have been published (see refs. in col. 19). Bands which could not be correlated in this way are given in col. 18; they form 2% of the total.

Experimental.-See Part I ${ }^{1}$ for details.
Dyson Perrins Laboratory, Oxford.
University Chemical Laboratory, Cambridge.
[Received, December 11th, 1958.]

[^0]: * Parentheses signify apparent molecular extinction coefficients, and square brackets indicate arithmetical means and standard deviations; see preceding paper.
 ${ }_{1}^{1}$ Part I, Katritzky and Coats, preceding paper.
 ${ }^{2}$ Bellamy, "The Infrared Spectra of Complex Molecules," 2nd edn., Methuen, London, 1958, pp. 203-223.
 ${ }^{3}$ R. N. Jones and Sandorfy in Weissburger, "Technique of Organic Chemistry. Vol. IX. Chemical Applications of Spectroscopy," Interscience Publ. Inc., London, 1956, pp. 509-531.
 ${ }^{4}$ Abbott and Elliot, Proc. Roy. Soc., 1956, A, 234, 247.
 ${ }^{5}$ Richards and Thompson, J., 1947, 1248.
 ${ }^{6}$ Dijkstra and Jonge, Rec. Trav. chim., 1956, 75, 1173.
 * Brownlie, J., 1950, 3062.
 ${ }^{8}$ Miyazawa, J. Chem. Soc. Japan, 1956, 77, 171; Miyazawa, Shimanouchi, and Mizushima, J. Chem. Phys., 1956, 24, 408; Spectrochim. Acta, 1957, 10, 217.
 ${ }^{9}$ Katritzky and Gardner, $J ., 1958,2198$.
 10 Katritzky, R. A. Jones, and Hands, ibid., p. 3165.
 11 Katritzky and Hands, J., 1958, 2202.
 12 Katritzky and Gardner, ibid., p. 2192.
 ${ }^{13}$ Katritzky, Beard, and Coats, unpublished work.
 14 Katritzky and Hands, ibid., p. 2195.
 15 Katritzky and Lagowski, ibid., p. 4155.
 ${ }^{16}$ R. A. Jones and Katritzky, (a) $\underset{J}{ }$., 1959, 1317; (b) unpublished work.
 17 Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.

[^1]: ${ }^{18}$ Russell and Thompson, $J ., 1955,483$; Spectrochim. Acta, 1956, 8, 138; Moccia and Thompson, ibid., 1957, 10, 240.

 19 Katritzky, J., 1958, 4162.
 ${ }^{20}$ Katritzky, Quart. Rev., 1956, 10, 395.
 ${ }^{21}$ Otting, Chem. Ber., 1956, 89, 1940.

[^2]: ${ }_{22}$ Frazer and Rice, Nature, 1952, 170, 490.
 ${ }^{23}$ Francis, J. Chem. Phys., 1951, 19, 942.
 ${ }_{24}$ R. N. Jones and Cole, J. Amer. Chem. Soc., 1952, 74, 5648.

